Quantum Natural Gradient

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetic Natural Gradient Descent

In this appendix we show that 1 2 ∆ F (θ)∆ is a second order Taylor approximation of D KL (p(θ)p(θ + ∆)). First, let g q (θ) :=D KL (qp(θ)) = ω∈Ω q(ω) ln q(ω) p(ω|θ). We begin by deriving equations for the Jacobian and Hessian of g q at θ: ∂g q (θ) ∂θ = ω∈Ω q(ω) p(ω|θ) q(ω) ∂ ∂θ q(ω) p(ω|θ) = ω∈Ω q(ω) p(ω|θ) q(ω) −q(ω) ∂p(ω|θ) ∂θ p(ω|θ) 2 = ω∈Ω − q(ω) p(ω|θ) ∂p(ω|θ) ∂θ , (4) and so: ∂ 2 g q (θ)...

متن کامل

A Natural Policy Gradient

We provide a natural gradient method that represents the steepest descent direction based on the underlying structure of the parameter space. Although gradient methods cannot make large changes in the values of the parameters, we show that the natural gradient is moving toward choosing a greedy optimal action rather than just a better action. These greedy optimal actions are those that would be...

متن کامل

Energetic Natural Gradient Descent

We propose a new class of algorithms for minimizing or maximizing functions of parametric probabilistic models. These new algorithms are natural gradient algorithms that leverage more information than prior methods by using a new metric tensor in place of the commonly used Fisher information matrix. This new metric tensor is derived by computing directions of steepest ascent where the distance ...

متن کامل

Quantum computational gradient estimation

The vector gradient of a real-valued function f of a vector argument can be calculated using just two calls to a black-box quantum oracle for f . The mechanism is simple, and capitalises on the fact that, in the vicinity of a point x, e2πiλf(x) is periodic, with period parallel and inversely proportional to ∇f(x). A superposed state is created discretising a small hyperrectangle around the doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum

سال: 2020

ISSN: 2521-327X

DOI: 10.22331/q-2020-05-25-269